

Role of aqueous chemistry in organic aerosols Barbara Ervens

CSD is leading

- in the fundamental process understanding of the **aerosol--cloud- precipitation system**
- in the area of **cloud effects on organic aerosol** by aqueous phase chemistry

Global aerosol chemical composition

Submicron particles (Aerosol mass spectrometer)

- Secondary organics comprise ~50% of total particulate mass globally
- In order to predict aerosol loadings and properties, chemical formation pathways have to be understood

Adapted from Jimenez et al., 2009

Ammonium

Chloride

Primary organics

Sulfate

Nitrate

Secondary organics

Primary species:

Directly emitted from biogenic and anthropogenic sources

Secondary species:

Formed by chemical reactions in the atmosphere

Secondary organic aerosol (SOA) formation

Aqueous SOA formation: Model development

Model validation of aqueous SOA formation

Example: Organic aerosol formation in clouds: GoMACCS, Houston, TX

- Sulfate is formed in clouds; relatively well constrained in process models
- Oxalate can be considered a <u>tracer</u> for organic cloud chemistry as it does not have any other atmospheric sources
- Mass ratio << 1: Oxalate formation is less efficient than sulfate formation
- Increase in ratio points to relatively slower oxalate formation as compared to sulfate

⇒ Qualitative agreement in measured and predicted trends in Oxalate/Sulfate mass ratio

Application on regional and global scale

CMAQ (Community Multiscale Air Quality) model (EPA)

Lin et al., 2014

Carlton and Ervens, 2011

Predicted organic mass/ organic carbon ratio at the surface clearly enhanced in Southeast US when aqueous SOA formation included

Global chemistry transport model

Global models predict enhancement of organic aerosol loading in regions of high humidity/cloudiness and organic precursors

Organic aerosol formation in clouds

Summary

- Process models can reproduce observed trends in aqueous
 SOA proxies at various locations
- Regional/global models suggest that in regions with high abundance of clouds and biogenic VOCs aqueous SOA formation is significant
- Large uncertainties exist in aqueous SOA parameterizations

Future work

- Extend the chemical mechanisms to more aqSOA precursors and products
- Explore sensitivities of aqSOA formation to chemical and microphysical parameters on regional and global scales
- Refine parameterizations based on more comprehensive chemical mechanisms and case studies